

Features:

- 5 Gbps to 10.3125 Gbps duplex data links
- CWDM EML Transmitter and PIN Receiver
- 1x12 surface mount connector providing Digital Diagnostics
- Rugged LC connector housing including screw mounted OSAs
- -40 to $+85^\circ\text{C}$ operating temperature
- Option for RoHS 6/6 compliant and lead free per Directive 2002/95/EC
- $+3.3\text{V}$ and $+2.5\text{V}$ power supply
- AC-Coupled Transmitter & Receiver Data
- Conformal coating options for harsh environment use
- COTSWORKS RJs are fully tested over the operating temperature range
- Pigtail Assembly option is available. Contact COTSWORKS for details

The RJ-10G-CWDM is ideal for harsh environment connectivity because of its low cost, availability, and wide operating parameters.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Note
Maximum 3.3V Supply Voltage	V_{CC3V3}	-0.3	4.0	V	
Maximum 2.5V Supply Voltage	V_{CC2V5}	-0.5	3.0	V	
Electrostatic Discharge, Data I/O pins	ESD	-	500	V	(1)
Storage Temperature	T_{sto}	-55	100	$^\circ\text{C}$	
Operating Temperature	T_{op}	-40	85	$^\circ\text{C}$	(7)
Relative Humidity	RH	0	95	%	(2)(4)
Hot Bar Soldering Temperature	-	-	260	$^\circ\text{C}$	10 seconds, leads only, (5)(6)
Hand Lead Soldering Temperature	-	-	260	$^\circ\text{C}$	10 seconds, leads only, (5)(6)
Conformal Coating	-	0.8	1.2	mil	(3)

Notes:

- 1) Proper ESD conditions should be employed while attaching RJ to the host board
- 2) Non-condensing based on conformal coating
- 3) See ruggedization notes on pg. 9
- 4) RJ transceivers may be water washed. The process must be followed by an 80°C bake for one hour to ensure drying of any water inside the shell
- 5) For optional solder post version, solder posts are intended for mechanical retention only and do not have to comply fully to IPC J-STD-001 Class 3
- 6) The components should not undergo Reflow Soldering under any circumstances.
- 7) Case temperature


General Specifications

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
3.3V Supply Voltage	V_{CC3V3}	3.14	3.3	3.47	V	$\pm/- 5\%$
2.5V Supply Voltage	V_{CC2V5}	2.375	2.5	2.625	V	$\pm/- 5\%$
Data Rate	BR	5.0	-	10.3125	Gbps	Balanced NRZ data protocols

Electrical Specifications (T_{OP} = -40 to 85°C, V_{CC3V3} = 3.14 to 3.47 Volts, V_{CC2V5} = 2.375 to 2.625 Volts)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
3.3V Supply Current	I _{CC3V3}	-	-	500	mA	
2.5V Supply Current	I _{CC2V5}	-	-	350	mA	
Total Module Power Dissipation	P _{DISS}	-	-	2.66	W	0°C to +85°C
Transmitter						
Input Differential Impedance	R _{in}	80	100	120	Ω	
TX Single-Ended Input Voltage Swing	V _{in}	90	-	400	mV	
Data Input Total Jitter	T _{X TJ}	-	-	0.44	UI	
TX Disable Input Voltage	V _{DIS}	2	-	3.77	V	LVTTL
TX Enable Input Voltage	V _{EN}	-	-	0.8	V	LVTTL
TX Fault Output Low	V _{TFL}	-0.3	-	0.4	V	
Initialization Time for cooled module	T _{Start Up}	-	-	1	s	
Disable Assert Time	T _{On}	-	-	100	ms	
Enable Assert Time	T _{Off}	-	-	2	ms	
Receiver						
Rx Single-Ended Output Voltage Swing	V _O	150	-	500	mV	
Data Output Rise Time (10G)	t _r	-	45	60	ps	(1)
Data Output Rise Time (5G)		-	75	125	ps	(1)
Data Output Fall Time (10G)	t _f	-	45	60	ps	(1)
Data Output Fall Time (5G)		-	75	125	ps	(1)
Total Contributed Jitter	T _J	-	-	0.42	UI	
Signal Detect De-Assert Voltage	S _D _D	-	-	0.4	V	(2)
Signal Detect Assert Voltage	S _D _A	2.64	-	3.77	V	(2)
Signal Detect De-Assert Time	t _d	-	12	100	μs	
Signal Detect Assert Time	t _a	-	12	100	μs	
Serial Bus						
Data, Clock Input Low Voltage	V _{IL}	-0.3	-	0.3*V _{CC3V3}	V	
Data, Clock Input High Voltage	V _{IH}	0.7*V _{CC3V3}	-	V _{CC3V3} +0.3	V	
Data, Clock Output Low Voltage	V _{OL}	-	-	0.4	V	
Data, Clock Output High Voltage	V _{OH}	V _{CC3V3} -0.4	-	-	V	
Notes:						
1)	20% to 80%					
2)	SD is LVTTL. Logic 1 indicates normal operation; logic 0 indicates no signal is detected.					

RJ-10G-CWDM Host Pin Assignment

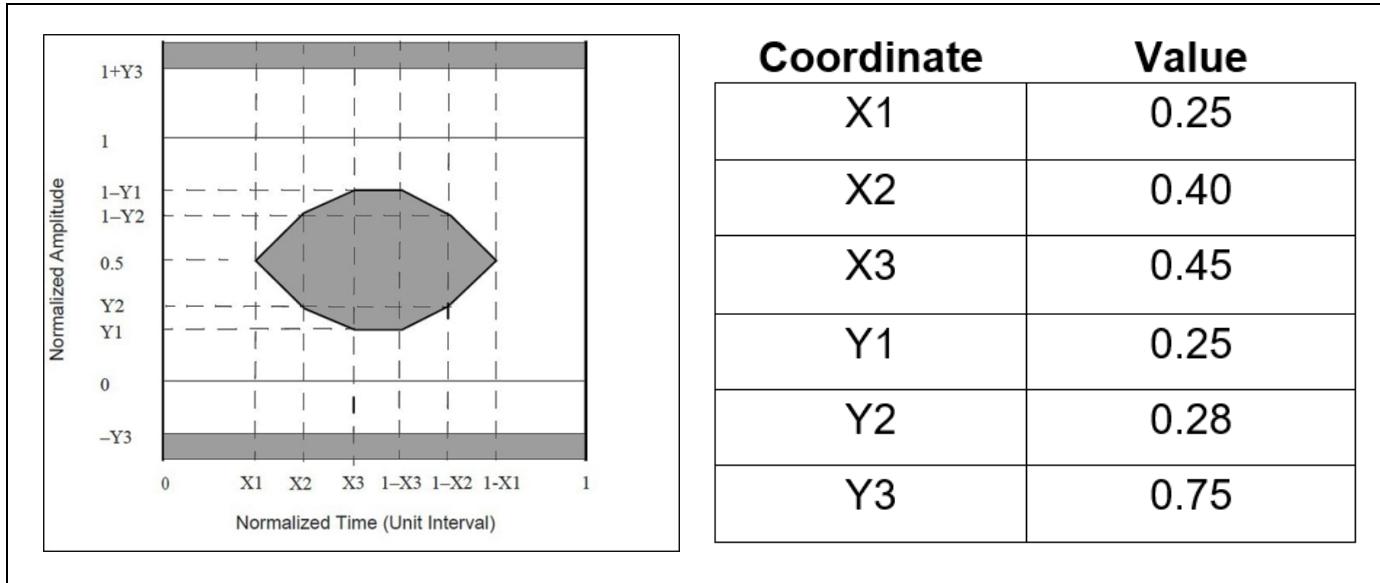
Pin	Symbol	Description	Logic/Protocol
1	TX-	Transmitter Data Input, Negative	CML
2	TX+	Transmitter Data Input, Positive	CML
3	GND	Ground	0V
4	VCC_2V5	2.5V Supply	2.5V
5	TX_DIS	Transmitter Disable	LV TTL
6	SCL	I2C Clock	I2C
7	SDA	I2C Data	I2C
8	SD	Receiver Signal Detect	LV TTL
9	VCC_3V3	3.3V Supply	3.3V
10	GND	Ground	0V
11	RX+	Receiver Data Output, Positive	CML
12	RX-	Receiver Data Output, Negative	CML

*Diagram is for pinout purposes only, module length not to scale

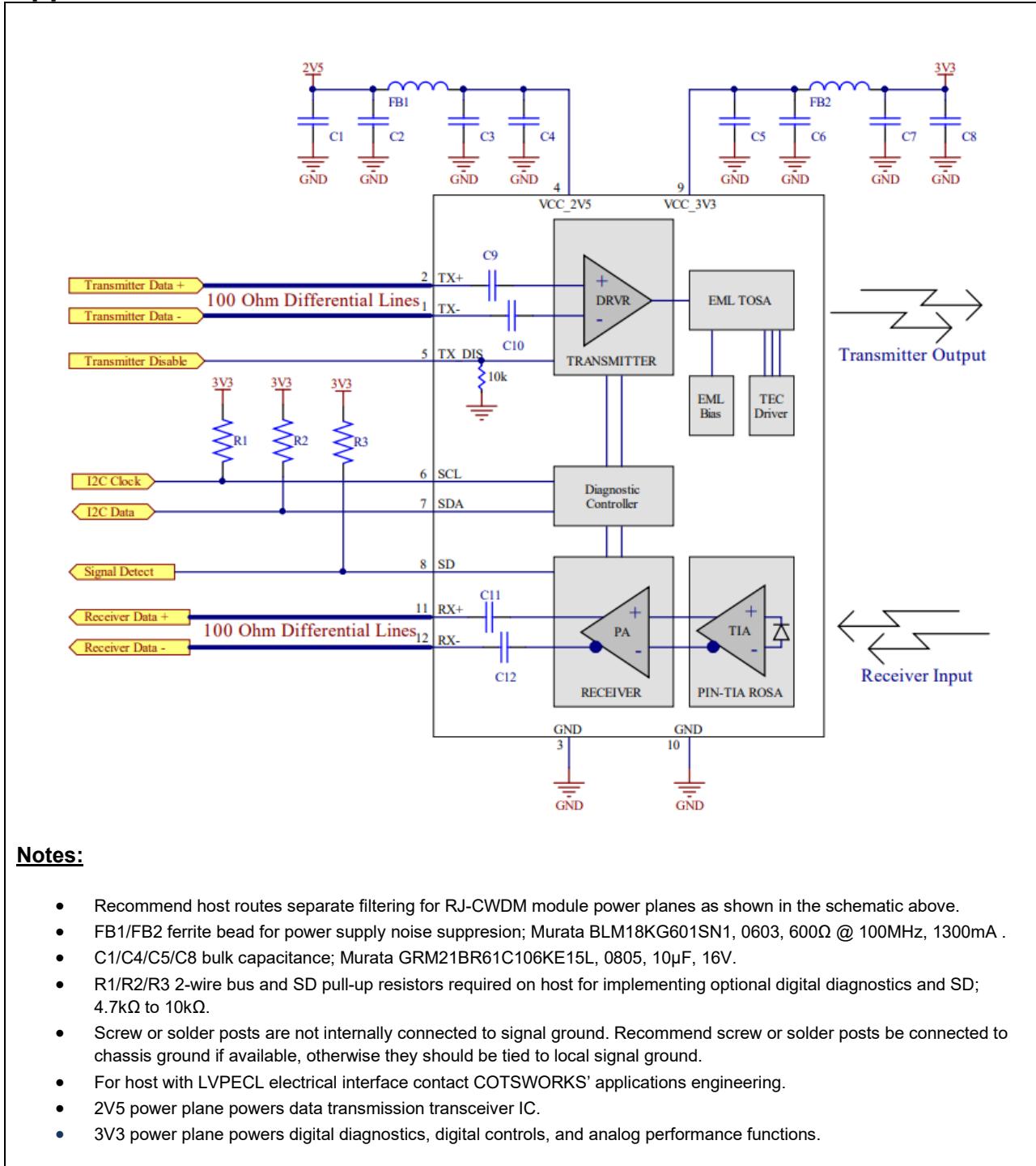
Digital Diagnostics Information

The COTSWORKS RJ module utilizes signal pins for a 2-wire bus required to access digital diagnostics. The transceiver pinout (including those pins required for 2-wire communication to access the digital diagnostics) appears on the previous table.

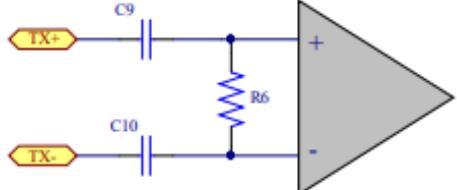
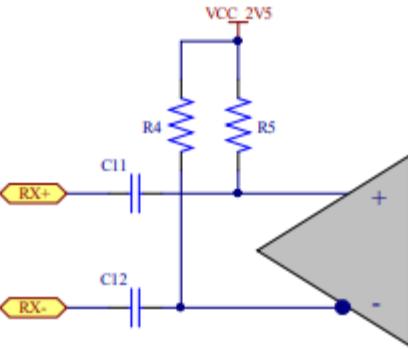
For more information on Digital Diagnostics, visit www.cotsworks.com/support.

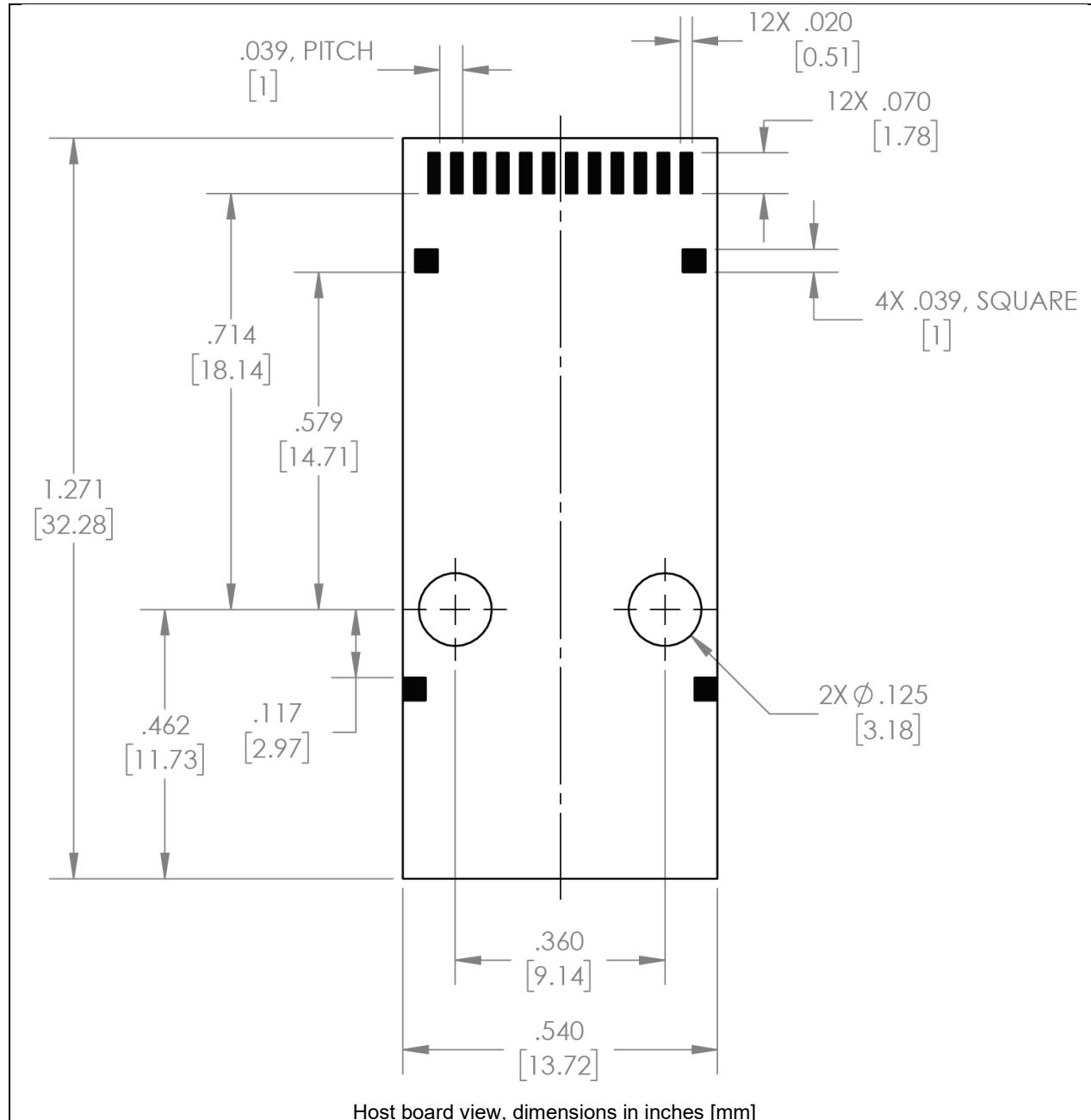

Optical Characteristics ($T_{OP} = -40$ to $85^\circ C$, $V_{CC3V3} = 3.14$ to 3.47 Volts, $V_{CC2V5} = 2.375$ to 2.625 Volts)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Transmitter						
Output Optical Power	P _{OUT}	-1	-	+3	dBm	(1,2)
	λ	1304.5	1311	1317.5	nm	RJ-10G-CWDM-31
	λ	1324.5	1331	1337.5	nm	RJ-10G-CWDM-33
	λ	1464.5	1471	1477.5	nm	RJ-10G-CWDM-47
	λ	1484.5	1491	1497.5	nm	RJ-10G-CWDM-49
	λ	1504.4	1511	1517.5	nm	RJ-10G-CWDM-51
	λ	1524.5	1531	1537.5	nm	RJ-10G-CWDM-53
	λ	1544.5	1551	1557.5	nm	RJ-10G-CWDM-55
	λ	1564.6	1571	1577.5	nm	RJ-10G-CWDM-57
	λ	1584.5	1591	1597.5	nm	RJ-10G-CWDM-59
	λ	1604.5	1611	1617.5	nm	RJ-10G-CWDM-61
Extinction ratio	ER	8.2	-	-	dB	
Relative Intensity Noise	RIN	-	-	-130	dB/Hz	
TX Mask Compliance	See TX Compliance Mask					(3)
Receiver						
Receiver Sensitivity	RX _{SENS}	-	-18	-15	dBm	(3), BER = 1E-12
Receiver Saturation	RX _{SAT}	-1	-	-	dBm	
Optical Center Wavelength	λ _C	1264.5	-	1627.5	nm	
Return Loss	RL	12	-	-	dB	
Signal Detect Assert	SD _A	-	-	-16	dBm	
Signal Detect De-Assert	SD _D	-35	-	-	dBm	

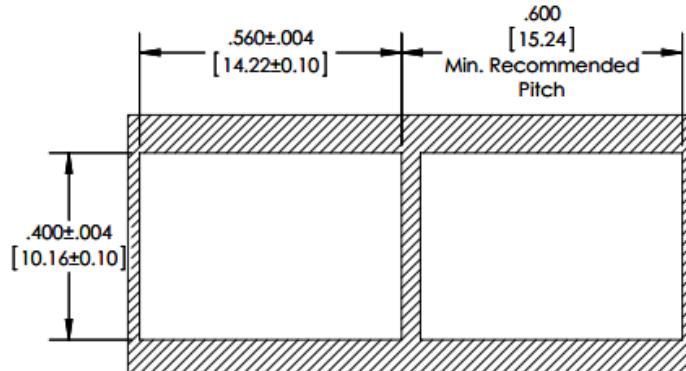


Signal Detect Hysteresis	SD _H	0.5	-	5	dB	
Notes:						
1)	Class 1 Laser Safety per IEC-60825-1 regulations					
2)	Measured with 2-5 meter patch cord consisting of laser optimized 9/125 μ m single-mode fiber					
3)	Measured using PRBS $2^{31}-1$ pattern					



TX Compliance Mask

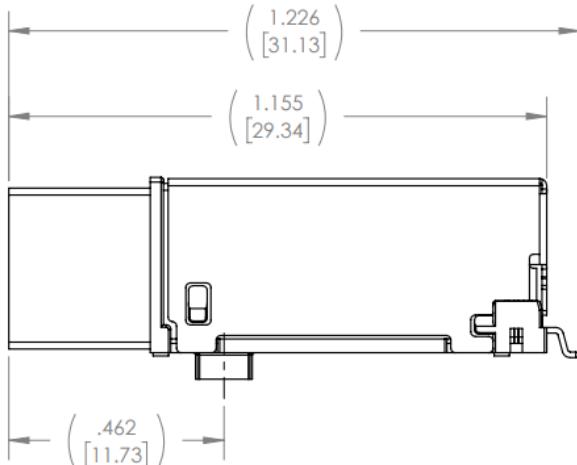
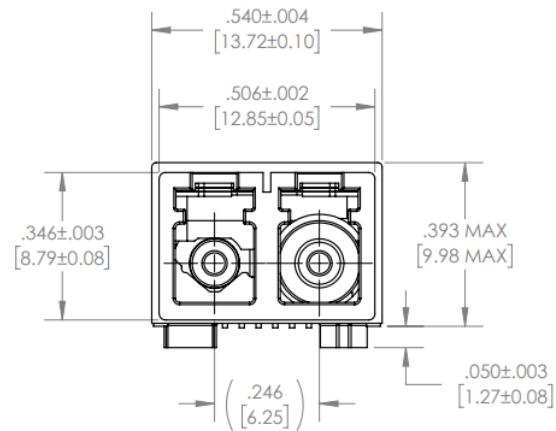


Application Schematics

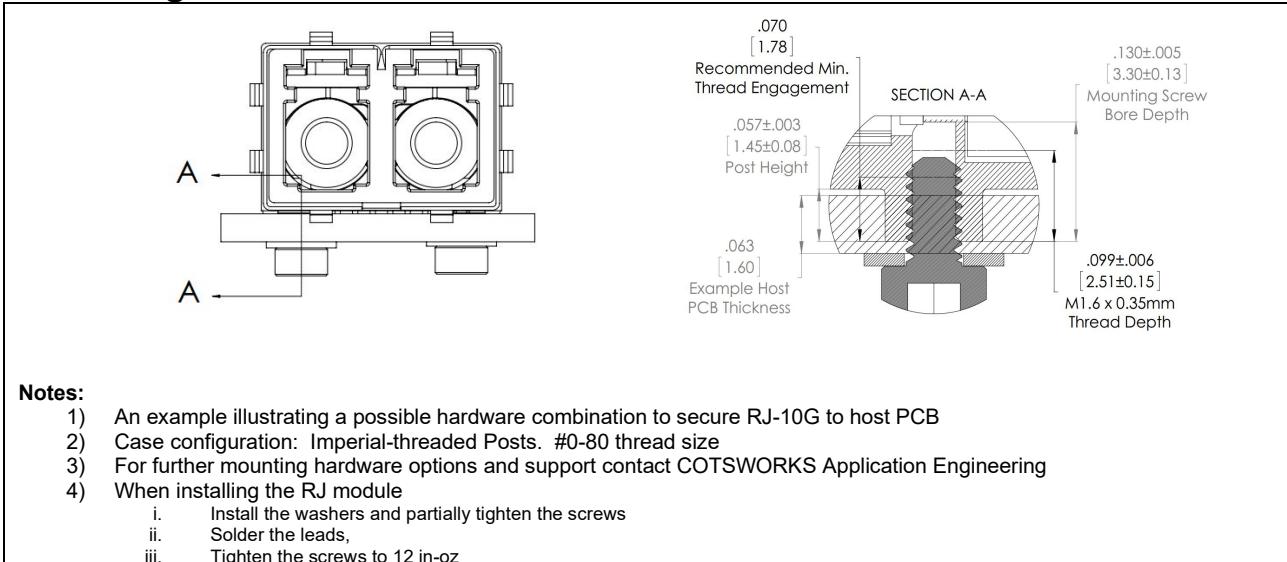


Application Schematics Continued

Transmitter Equivalent Input Circuit	Receiver Equivalent Output Circuit
Notes: <ul style="list-style-type: none"> C9 and C10 are $0.1\mu\text{F}$ internal input data coupling capacitors. R6 is an internal 100Ω input differential termination. Transmitter electrical input is CML compatible. 	Notes: <ul style="list-style-type: none"> C11 and C12 are $0.1\mu\text{F}$ output coupling capacitors. R4 and R5 are 45Ω pull-up resistors to V_{cc2V5}. Receiver electrical output is CML compatible.



Host Board Footprint Guideline

Panel Cutout



Dimensions in inches [mm]

Standard Mechanical Dimensions

Mounting Hardware Guidelines

Ruggedization Notes

- Parylene C coating is used for conformal coating with a $1.0\text{ mil} \pm 0.2\text{ mil}$ thickness through a deposition process.
- Parylene Type C has a 5600 VPM rating, withstands high temperatures, and is extremely resistant to oil/dirt, and object impact.
- Contact COTSWORKS for all MSDS and case composition information.

Reference Information

- 1) IEEE Standard 802.3-2008, Section 6

Regulatory Compliance

- COTSWORKS transceivers are Class 1 Laser Products and comply with US FDA regulations.
- These products are designed to comply with the Class 1 eye safety requirements of EN (IEC) 60825 and the electrical safety requirements of EN (IEC) 60950.
- This part has an option for compliance with Directive 2011/65/EU covering restriction on certain hazardous substances (RoHS)
 - Contact COTSWORKS support for a product compliance matrix

Warnings:

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation

Ordering Information

RJ-10G-CWDM	-XX	-XX	-X	-X	-X	-X	-X
RJ Form Factor	Wavelength	Receptacle Type	Ruggedized Coating	Operating Temp Range	EMI Shield	RoHS Level	Mounting
10Gbps Max Data Rate	31: 1311nm 33: 1331nm 47: 1471nm 49: 1491nm 51: 1511nm 53: 1531nm 55: 1551nm 57: 1571nm 59: 1591nm 61: 1611nm	(Standard LC LX: ARINC-801	(Non-coated R: Parylene	A: -40 to 85°C	(No Shield E: Shield	(Level 5 6: Level 6	(Imperial Screw U: Metric Screw
Long Reach (SMF) CWDM Optical Band							

Example part number: RJ-10G-CWDM-55-R-A-6-U

[10G RJ Form Factor Transceiver, 1550nm, Digital diagnostics, Duplex LC connectors, Parylene-coated, industrial temperature range, Metric Screw Posts]

Contact COTSWORKS for mechanical dimensional information and other configuration options.

COTSWORKS and the COTSWORKS logo are registered trademarks of COTSWORKS, INC. COTSWORKS reserves the right to change, alter, or revise this document without notice unless otherwise agreed to.

